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Energy separation algorithm is good at tracking instantaneous changes in frequency and

amplitude of modulated signals, but it is subject to the constraints of mono-component

and narrow band. In most cases, time-varying modulated vibration signals of machinery

consist of multiple components, and have so complicated instantaneous frequency

signals, conventional filters fail to obtain mono-components of narrow band, and their

rectangular decomposition of time–frequency plane may split instantaneous frequency

trajectories thus resulting in information loss. Regarding the advantage of generalized

demodulation method in decomposing multi-component signals into mono-components,

an iterative generalized demodulation method is used as a preprocessing tool to

separate signals into mono-components, so as to satisfy the requirements by energy

separation algorithm. By this improvement, energy separation algorithm can be

generalized to a broad range of signals, as long as the instantaneous frequency

trajectories of signal components do not intersect on time–frequency plane. Due to the

good adaptability of energy separation algorithm to instantaneous changes in signals

and the mono-component decomposition nature of generalized demodulation, the

derived time–frequency energy distribution has fine resolution and is free from cross

term interferences. The good performance of the proposed time–frequency analysis is

illustrated by analyses of a simulated signal and the on-site recorded nonstationary

vibration signal of a hydroturbine rotor during a shut-down transient process, showing

that it has potential to analyze time-varying modulated signals of multi-components.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Time-varying modulation is a common phenomenon in the vibration responses of machinery, such as the vibration
signals of gears and rolling element bearings, and the vibration signals of rotors during speed and/or load varying
processes, which are typically amplitude modulation (AM) and/or frequency modulation (FM) signals. This is mainly due to
changes in the internal elements of machinery and/or in the external excitation from environment.
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Slow time variation of vibration system parameters, such as the mass, stiffness and damping, can result in the AM or FM
of simple harmonic vibration response. For example, for a vibration system under harmonic excitation, the time variation
in mass and/or stiffness will cause not only the FM of free vibration response due to the time-varying natural frequency,
but also the AM of forced vibration response due to the time-varying vibration amplitude. Similarly, the time variation of
damping will cause the AM of free vibration response due to the time-decaying vibration amplitude, and both the AM and
FM of forced vibration response due to the time-varying vibration amplitude and phase.

As well, changes in the running condition, such as the speed and load, cause modulation in the vibration responses of
machinery. For example, the vibration signals of rotors during the speed varying process are typical AM–FM processes,
because: (1) usually the rotating frequency and its multiples dominate rotor vibration signals, and they follow the rotating
frequency during the speed varying process, so the vibration responses have an FM characteristic; (2) the vibration of a
rotor in normal status is mainly excited by the centrifugal force which is proportional to the square of rotating frequency,
so the vibration amplitude is closely related to the rotating frequency, and the speed variation results in a time-varying
amplitude envelope, i.e. an AM effect on the vibration responses.

In addition, the signal propagation from vibration sources to transducers may also cause modulation effect on signals. In
general, there are multiple vibration excitations in machinery. The transfer path for a vibration signal propagating from
each excitation source to a vibration transducer consists of multiple components, and each component has its own
dynamic characteristics and operational condition. During the propagation, these components will have an effect on the
vibration signal, and cause it to be a modulated signal.

In summary, the modulation phenomenon of vibration signals is closely related to the internal components and their
dynamic characteristics, as well as the external environment of machinery. In this sense, time-varying modulated vibration
responses contain the health or running condition information of machinery. In essence, vibration monitoring and
diagnosis relies on the detection of changes in vibration system parameters and running condition to reveal the health
status of machinery. Therefore, how to effectively extract AM and FM information from time-varying modulated signals is
an important issue in vibration monitoring and diagnosis of machinery.

At present, the most commonly used method to demodulate time-varying modulated signals is based on the integration of
Hilbert transform and analytic signal, such as the well known envelope demodulation method [1,2]. However, Hilbert transform
is a linear integral approach, and is usually implemented via fast Fourier transform. The stationarity assumption on signals of
Fourier transform and the integral over a long duration cause it to lose the adaptability to instantaneous signal changes.

Recently, it is found that energy separation algorithm based on energy operator is effective in analyzing modulated
signals [3–13]. Energy operator is a nonlinear differential operator. It can estimate the energy required to generate a signal
by means of nonlinear combination of the instantaneous signal values and its derivatives. Its derivative, so called energy
separation algorithm can separate AM–FM signals into AM and FM components, and obtain their amplitude envelope and
instantaneous frequency. It does not need to construct any basis functions, and is a completely data driven algorithm
adaptive to the local structure of a signal. Compared with Hilbert transform based demodulation, it is a local algorithm in
time domain, and it can compute the instantaneous frequency and amplitude envelope of a time-varying AM–FM signal. It
has attractive features such as high time–frequency resolution, adaptability to instantaneous nature, and low
computational complexity.

Kaiser [3–5] and Maragos and coworkers [6–9] presented energy operator based demodulation, and applied it to speech
analysis. Cheng et al. [10] used energy separation algorithm to separate the amplitude envelope and instantaneous
frequency from intrinsic mode functions obtained with empirical mode decomposition, and thereby detected the localized
damage of rolling element bearings. Bassiuny and Li [11] separated the AM and FM characteristics from the current signal
of feed motor in a machine using empirical mode decomposition, computed the amplitude envelope and instantaneous
frequency based on energy separation algorithm, and constructed a time–frequency distribution to monitor the condition
of machine tools. Liang and Soltani Bozchalooi [12] used energy separation algorithm to extract both the amplitude and
frequency modulations of vibration signals for bearing fault detection. In these researches, the good performance of energy
separation algorithm in processing modulated signals of narrow band is shown.

Energy separation algorithm is subject to the constraints of mono-component and narrow band. It usually assumes AM and FM
(amplitude envelope and instantaneous frequency) signals do not vary too fast or too greatly with time compared to the carrier
frequency. To fulfill this requirement, a signal is usually preprocessed by bandpass filtering, but for many time-varying modulated
signals, this does not address the limitation caused by the requirement of mono-component and narrow band on signals yet.
Regarding large frequency deviation and wideband signals, Santhanam [13] proposed a generalized energy separation method
based on multi-rate conversion and frequency shift. Its idea is useful to analyze modulated signals of wideband.

However, the issue on how to process multi-component signals with spectral overlap so as to fulfill the requirement by
the energy separation algorithm, have not been addressed yet. In applications, many signals are composed of multiple
components, and their frequency contents are nonlinearly time-varying and widely ranging on the time–frequency plane.
In most cases, the instantaneous frequency trajectories of different components on the time–frequency plane are so curved
that they have spectral overlap when they are projected onto the frequency axis. For such signals, conventional filtering
will split the instantaneous frequency trajectories on the time–frequency plane due to its nature of narrow
band decomposition parallel to the time axis, thus resulting in energy leakage and information loss, and cannot obtain
mono-components. So how to generalize the energy separation algorithm to such signals is an interesting issue of
important value.
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Recently, Olhede and Walden [14] proposed a generalized demodulation approach to multi-component signals.
By means of this method, some modulated signals with curvilinear instantaneous frequency trajectories on the time–
frequency plane can be demodulated and decomposed into mono-components. Cheng et al. [15] improved the generalized
demodulation so that the waveform of each separated mono-component can be obtained. However, in order to separate a
multi-component signal into mono-components, both the original generalized demodulation and its improved version
require that the demodulated components do not have spectral overlaps in the frequency domain, since it is accomplished
by a single step of generalized demodulation following by a rectangular multi-band decomposition of time–frequency
plane. This requirement is somewhat too strict to be fulfilled for many complicated time-varying signals. For example,
rotor vibration signals during speed varying processes often have spectral overlap, because the rotating frequency and its
multiples are usually dominant and they follow the time variation of the rotating frequency, thus ranging in a wideband
and overlapping in the frequency domain. For such signals, the original generalized demodulation method or its improved
version often cannot extract the constituting mono-components. Hence, the problem with the original and improved
generalized demodulation method is not negligible. Fortunately, this limitation can be overcome by our proposed method,
i.e. iterative application of the generalized demodulation. The components of interest will be separated one by one with
suitable demodulation vector adapted to it. This improvement makes generalized demodulation a potential solution to the
problems with the energy separation algorithm caused by multi-components and their spectral overlap. With such method
as a preprocessing tool, the energy separation algorithm is expected to be generalized to wideband modulated signals of
multi-components with spectral overlap.

Time-varying modulated signals are essentially nonstationary, because their amplitude and/or frequency change along with
time. So time–frequency analysis is expected to be useful to process such signals. However, the inherent shortcomings or
drawbacks of conventional time–frequency analysis methods limit their performance. As linear transforms, both short time
Fourier transform and wavelet transform are subject to the constraint by Heisenberg uncertainty principle, i.e. the time
localization and frequency resolution cannot be obtained at their highest simultaneously, either of them can only be enhanced
at the expense of the other one, so that their time–frequency resolution is limited [16–18]. In addition, as basis expansion based
methods, the basis in either Fourier or wavelet transform is fixed, therefore they lack adaptability in simultaneously matching
the complicated components of signals. As a typical representative of Cohen class distributions, Wigner–Ville distribution has
the best time–frequency resolution, but it suffers from the inevitable cross term interferences (including both inner and outer
interferences) for multi-component signals which hinders the interpretation of signal features in the time–frequency domain
and causes it not suitable to analyze multi-component signals. Various reduced interference distributions may suppress the
negative effect of cross terms, but at the expense of a worse time–frequency resolution or suppression of auto terms [16–18].
Therefore, how to construct a time–frequency representation for arbitrary time-varying modulated signals in a fine resolution
and without cross term interferences, so as to resolve the time–frequency feature effectively, is another important issue.

Observing the issue with the time–frequency analysis of time-varying modulated signals of multi-components, the mono-
component and narrow band requirements on energy separation algorithm, and the issue with the original generalized
demodulation in extracting mono-components from signals with spectral overlapping, the solutions to address them are
proposed, respectively: (1) an iterative generalized demodulation method for extracting mono-components from time varying
modulated signals; (2) improved energy separation algorithm via iterative generalized demodulation method, which is suitable
to analyze many complicated modulated signals; and (3) a new time–frequency energy distribution based on the improved
energy separation algorithm, which is suitable to analyze time varying modulated signals of multi-components. Three main
contributions are made in this paper correspondingly: (1) The generalization of generalized demodulation to arbitrary time-
varying modulated signals as long as their instantaneous frequency trajectories do not intersect on the time–frequency plane.
By iterative generalized demodulation, the components of interest will be separated one by one, even though the other
components still overlap in the frequency domain after a single generalized demodulation. (2) The generalization of energy
separation algorithm to arbitrary time-varying modulated signals even though they do not satisfy the two requirements by the
original energy separation algorithm, i.e. (a) mono-component and (b) narrow band. (3) A new time–frequency energy
distribution for analysis of complicated nonstationary signals of multi-components, which has a fine time–frequency resolution
and is free from cross term interferences. By integrating the above solutions and exploiting their respective merits, a time–
frequency analysis method based on improved energy separation via iterative generalized demodulation is proposed for
analyzing almost arbitrary time-varying modulated signals.

This paper is organized as follows. Firstly, the basics on the energy operator and the energy separation algorithm,
together with the construction of time–frequency energy distribution, are introduced in Section 2, and the idea of iterative
generalized demodulation is introduced in Section 3. Then, in Section 4, the proposed method based on generalized
demodulation and the energy separation algorithm is applied to analyze the rotor vibration signal of a hydroturbine during
a transient process. Finally, conclusions are drawn in Section 5.
2. Time–frequency analysis based on energy separation algorithm

Any modulated signal can be modeled as a superposition of AM–FM processes. The instantaneous frequency and
amplitude envelope characterize such modulated signals, and they can be estimated using the energy separation
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algorithm. Time-varying modulated signals are essentially nonstationary, so it is a better way to analyze them in the joint
time–frequency domain based on the estimated instantaneous frequency and energy.

2.1. Energy operator

For any signal x(t), the energy operator C is defined as [3–6]

C½xðtÞ� ¼ ½ _xðtÞ�2�xðtÞ €xðtÞ, (1)

where _xðtÞ and €xðtÞ are the first and the second derivative of x(t) with respect to time t, respectively. Actually, the output of
energy operator tracks the energy required to generate the signal x(t).

Consider an undriven linear undamped vibration system which is composed of a mass m suspended by a spring of
stiffness k. Applying Newton’s law of motion to it yields a second-order differential motion equation

m €xðtÞþkxðtÞ ¼ 0, (2)

where x(t) is the displacement of mass m measured from its equilibrium position, and €xðtÞ the second derivative of x(t) with
respect to time t, i.e. acceleration. This equation governs the motion of the mass, and its solution is a harmonic oscillation

xðtÞ ¼ AcosðotþjÞ: (3)

Accordingly its first and second derivatives, i.e. velocity and acceleration, can be deduced as

_xðtÞ ¼ �AosinðotþjÞ, (4)

€xðtÞ ¼ �Ao2 cosðotþjÞ, (5)

where A is the oscillation amplitude, o¼
ffiffiffiffiffiffiffiffiffiffi
k=m

p
is the natural angular frequency, and f is an arbitrary initial phase.

The total energy of this vibration system is the sum of the potential energy in the spring and the kinetic energy of
the mass, i.e.

E¼
1

2
k½xðtÞ�2þ

1

2
m½ _xðtÞ�2: (6)

Substituting for xðtÞ and its derivative _xðtÞ, then

E¼
1

2
mA2o2: (7)

Thus the energy of a simple harmonic oscillation is proportional to the square of both the amplitude and the frequency of
the oscillation.

Applying the energy operator C to the harmonic oscillation x(t), and substituting for its first and second derivatives,
_xðtÞ and €xðtÞ, yields

C½xðtÞ� ¼C½AcosðotþjÞ� ¼ A2o2: (8)

Comparing Eq. (8) with (7), it can be seen that the output of energy operator tracks the source energy (in the sense of
per half unit mass) generating the harmonic oscillation.

The energy operator in Eq. (1) is defined for continuous time signals. Its counterpart for discrete time signals is
defined as

C½xðnÞ� ¼ ½xðnÞ�2�xðn�1Þxðnþ1Þ: (9)

This operator only needs three samples to calculate the signal source energy at any time, so it has a good adaptability to the
instantaneous changes in signals and an excellent ability to resolve transient event.

2.2. Energy separation algorithm

Applying the energy operator C to the derivative of x(t), i.e. _xðtÞ, produces

C½ _xðtÞ� ¼C½�AosinðotþjÞ� ¼ A2o4: (10)

The absolute amplitude and the frequency can be obtained by solving the combination of Eqs. (8) and (10) [7–9]

9A9¼
C½xðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½ _xðtÞ�

p , (11)

o¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½ _xðtÞ�
C½xðtÞ�

s
: (12)

Slow time variation of oscillation elements will result in the AM or FM of the simple oscillator harmonic response.
Energy operator can also be generalized to signals with arbitrary time-varying amplitude and frequency.
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Any modulated signals, including both AM components and FM components, can be modeled as a superposition of
AM–FM processes. Any AM or FM is a special case of time-varying modulated signals.

Assume an AM–FM signal in the form

xðtÞ ¼ aðtÞcos½octþom

Z t

0
qðtÞdtþj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fðtÞ

�, (13)

where a(t) is the instantaneous amplitude envelope, f(t) is the instantaneous phase, oc is the carrier frequency, om is the
maximum frequency deviation from oc, and j is an arbitrary phase offset. The instantaneous angular frequency equals the
derivative of the instantaneous phase

oðtÞ ¼ _fðtÞ ¼ocþomqðtÞ: (14)

If the instantaneous amplitude envelope a(t) and the instantaneous frequency o(t) do not vary too fast (in terms of
changing rate) or too greatly (in terms of changing range) compared to the carrier frequency oc, then the output of the
energy operator C applied to the AM–FM signal will track the squared product of the instantaneous amplitude envelope
a(t) and the instantaneous frequency o(t), i.e.

C aðtÞcos

Z t

0
oðtÞdtþj

� �� �
¼ ½aðtÞoðtÞ�2: (15)

Using the energy separation algorithm, the absolute of instantaneous amplitude envelope a(t) and the instantaneous
frequency o(t) can be estimated as

9aðtÞ9¼
C½xðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½ _xðtÞ�

p , (16)

oðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½ _xðtÞ�
C½xðtÞ�

s
: (17)

The above energy operator and the energy separation algorithm are associated with continuous-time signals. They can
also be generalized to discrete-time signals. Different algorithms [7] have been derived by using difference to approximate
derivatives, such as DESA-1a which uses a single sample asymmetric difference to approximate derivatives, DESA-1 which
uses a single sample symmetric (by averaging the sum output of the energy operator applied to the backward and forward
difference) difference, and DESA-2 which uses symmetric difference (between samples with time indices differing by 2) to
approximate derivatives.

2.3. Time–frequency energy distribution

Time-varying modulated signals are essentially nonstationary, so it is useful to investigate the time variation of each
frequency component in the joint time–frequency domain.

Given the instantaneous frequency fi(t)=oi(t)/(2p) and energy Ei(t) of the ith signal component at each instant t, a
time–frequency energy distribution can be constructed as

Eðt,f Þ ¼
X

i

EiðtÞd½f�fiðtÞ�: (18)

Note that the energy here refers to the energy required to produce the signal, rather than the conventional energy of the
signal itself which is simply related to the square of signal amplitude. For a vibration signal, if it is viewed as a generalized
‘displacement’ or ‘velocity’, then its energy in the conventional sense indicates the potential or kinetic energy of the
vibration system producing it. But the energy calculated by the energy operator is completely different, it implies the total
mechanical energy which is the sum of potential and kinetic energy required to generate the signal. The time variation of
energy indicates changes in the internal parameters of a vibration system (such as the mass and/or stiffness associated
with frequency, and the damping associated with energy dissipation and thereby the amplitude envelope) and in the
energy excitation or consumption by external environment. The instantaneous energy is a function of both instantaneous
frequency and amplitude, which is proportional to the product of the squared instantaneous frequency and the squared
amplitude envelope, so the time–frequency energy distribution reveals not only the time evolution of each frequency
component, but also the time variation of the vibration amplitude in terms of amplitude envelope associated with each
frequency component.

3. Generalized demodulation

The mono-component requirement on signals by the energy separation algorithm should be satisfied to enable the
estimated instantaneous frequency to have physical meaning. In most cases, the signal is composed of multiple components
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with complicated time–frequency structure, so it is necessary to decompose the signal into mono-components. Generalized
demodulation is very useful to separate mono-component from time-varying modulated signals of multi-components.
3.1. Principle

Arbitrary modulated signals of multi-components can be demodulated by means of generalized demodulation [14]. The
superiority of generalized demodulation lies in that it can transform the instantaneous frequency trajectory of an
interested component, whatever form the instantaneous frequency trajectory may be, into a line parallel to the time axis,
thus avoiding overlap with other components in the frequency domain. This enables it to be possible to separate any
interested component from other components by conventional filters, as long as its instantaneous frequency trajectory
does not intersect with others. If projected onto the time–frequency plane, the demodulated components behave in such a
manner that (1) each component contributes exclusively to a different ‘tile’ in a specific tiling cell of the time–frequency
plane as closely as possible and (2) at any time instant, the contribution to each tile definitely comes from no more than
one component. In essence, the signal is decomposed into mono-components. Because of its advantage in separating
mono-component from multi-component signals, this method is expected to be an effective tool to preprocess signals so as
to satisfy the narrow band and mono-component requirements by the energy separation algorithm.

The generalized demodulation method is motivated from the modulation or frequency shift property of Fourier
transform. If a signal x(t) is frequency modulated by exp½�j2puðtÞ�, where u(t) is a real-valued function and specifies the
time-varying phase, then its Fourier transform can be expressed asZ 1

�1

xðtÞexp½�j2puðtÞ�exp½�j2pft�dt¼ X½f þ _uðtÞ�: (19)

If expf�j2p½uðtÞþ ft�g is viewed as a basis, then the generalized Fourier transform [14] is defined asZ 1
�1

xðtÞexp½�j2puðtÞ�exp½�j2pft�dt ¼

Z 1
�1

xðtÞexpf�j2p½uðtÞþ ft�gdt¼ XGðf Þ: (20)

Accordingly its counterpart, the inverse generalized Fourier transform [14], is derived as

xðtÞ ¼

Z 1
�1

XGðf Þexpfj2p½uðtÞþ ft�gdf ¼ exp½j2puðtÞ�
Z 1
�1

XGðf Þexp½j2pft�df : (21)

Therefore, if XG(f)=d(f� f0), then xðtÞ ¼ expfj2p½uðtÞþ f0t�g, i.e. a signal with instantaneous frequency yðtÞ ¼ f0þ _uðtÞ is
mapped to the frequency point f= f0. If the instantaneous frequency trajectory of a signal on the time–frequency plane is
specified by a function yðtÞ ¼ f0þ _uðtÞ, and the signal is expected to be mapped into a passband on the time–frequency
plane, then a demodulation phase function is needed to approximate the time-varying phase u(t). This demodulation
approach is very flexible, because the demodulation phase function, i.e. the approximation function fitting the
time-varying phase u(t), is constrained neither by linearity nor quadric, and it can vary arbitrarily with respect to time.

The original method applies the generalized demodulation only once, and it is only effective in such cases that all the
instantaneous frequency trajectories after a single step of generalized demodulation do not overlap in the frequency
domain. For example, if all the interested instantaneous frequency trajectories on the time–frequency plane have almost
the same slope at every instant, then after a single step of generalized demodulation with an appropriate demodulation
phase function, they will become parallel to the time axis and separable by conventional bandpass filtering. However, this
situation is not true in many cases. If some of the instantaneous frequency trajectories after a single step of generalized
demodulation still overlap in the frequency domain, then the original generalized demodulation will fail to decompose
such complicated signals into mono-components. For such signals, an improved generalized demodulation is proposed in
this section to tackle the problem with the original method. It repeats the generalized demodulation, each time with a
different demodulation phase function which is properly designed for the interested component, thus making the
interested component separable from others in the frequency domain by conventional filters. By such iterative generalized
demodulation, all the interested components will be extracted one by one, and the signal will be decomposed into
mono-components.

Arbitrary time-varying modulated signals of multi-components can be modeled as

xðtÞ ¼
XN

i ¼ 1

xiðtÞ ¼
XN

i ¼ 1

aiðtÞcos½2pfctþfiðtÞ�, (22)

where ai(t) is the real-valued instantaneous amplitude envelope, fi(t) is the instantaneous phase, and fc is the carrier
frequency. The basic steps to decompose it into mono-components based on iterative generalized demodulation are
summarized as follows.
(1)
 Create the analytic signal y(t)=x(t)+ jH[x(t)], to avoid interference on the time–frequency plane caused by meaningless
negative frequency, where H(U) denotes the Hilbert transform. For the signal as expressed by Eq. (22), its Hilbert
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transform can be approximated by the corresponding quadrature part

H½xðtÞ� �
XN

i ¼ 1

aiðtÞsin½2pfctþfiðtÞ�: (23)

So its analytic version can be expressed as

yðtÞ ¼ xðtÞþ jH½xðtÞ� ¼
XN

i ¼ 1

aiðtÞexpfj½2pfctþfiðtÞ�g, (24)

as long as a simple condition is satisfied, i.e. Fourier spectrum of the modulations

Mðf Þ ¼

Z 1
�1

XN

i ¼ 1

aiðtÞexp½jfiðtÞ�expð�j2pftÞdt (25)

be zero for fo� fc. This requirement can usually be approximately satisfied because: for many modulated signals,
Fourier spectrum of the modulations will decrease monotonically for fo� fc [19].
(2)
 Forward demodulate the analytic signal y(t) using a demodulation vector exp½�j2p~u iðtÞ� which is constructed
from a properly designed demodulation phase function ~u iðtÞ for the interested component xi(t), resulting in a
demodulated signal

zðtÞ ¼ exp½�j2p~uiðtÞ�yðtÞ ¼
XN

i ¼ 1

aiðtÞexpðjf2p½fct�~u iðtÞ�þfiðtÞgÞ, (26)

which is still analytic. This is to frequency demodulate the signal with the complex exponential of the demodulation
phase function ~uiðtÞ. It is equivalent to transforming the instantaneous frequency trajectory of an interested signal
component on the time–frequency plane into a desired shape or position, such that the frequency component of
interest concentrates exclusively in a specific rectangular cell on the time–frequency plane, so as to satisfy the mono-
component requirement. The change in the instantaneous frequency trajectory depends on the derivative of the
demodulation phase function used ~u iðtÞ, i.e. the instantaneous frequency of the demodulation vector _~uiðtÞ, because the
instantaneous frequency of the demodulated component differs from its original one fcþð1=2pÞ _fiðtÞ by the difference
_~u iðtÞ and becomes fcþð1=2pÞ _f iðtÞ�_~u iðtÞ. For example, the instantaneous frequency trajectory is simply shifted along the
frequency axis if _~uiðtÞ is constant (i.e. the demodulation vector exp½�j2p~uiðtÞ� is a harmonic); it is rotated by an angle
if _~uiðtÞ is linear (i.e. exp½�j2p~u iðtÞ� is a chirp); and it is curved if _~uiðtÞ is nonlinear, e.g. quadratic or logarithmic
(i.e. exp½�j2p~u iðtÞ� is nonlinear chirp). The shapes and positions of instantaneous frequency trajectories on the time–
frequency plane are changed, but the relative distances between each other along the frequency axis are unchanged.
Because all the components are demodulated using an identical demodulation phase function ~uiðtÞ, at each time instant
t their instantaneous frequency trajectories differ from their respective original ones by the same one _~uiðtÞ, so that the
spacing between each other remains the same. If the instantaneous frequency trajectories of interested components do
not intersect with others on the time–frequency plane, then after a single step of generalized demodulation, they still
do not intersect with others. In particular, the demodulated component which is expected to be separated will become
almost parallel to the time axis and perpendicular to the frequency axis after such generalized demodulation using a
suitable demodulation phase function ~u iðtÞ, thus concentrating exclusively in a narrow rectangular cell on the time–
frequency plane and readily being separable by conventional filters. The selection of demodulation phase function ~u iðtÞ

is very flexible, it may be arbitrary even without a closed form expression as long as it can be fitted numerically and
differentiable so that the instantaneous frequency can be approximated by its derivative with respect to time.
However, it should be carefully selected to ensure the instantaneous frequency trajectory of the interested
demodulated signal component lies exclusively in a rectangular cell on the time–frequency plane and does not overlap
with the other components if they are projected onto the frequency axis, such that the signal component can be
isolated from the other components by conventional filters. In applications, the instantaneous frequency of a interested
signal component is usually unknown, while it can be estimated by a numerical approximation (e.g. polynomial or
exponential fitting) to its time–frequency distribution (e.g. short time Fourier transform spectrogram), then the
demodulation phase function can be derived by integral of the estimated instantaneous frequency with respect to time.
In most cases, the instantaneous frequency trajectory of interested components is expected to be ‘shifted’ to a specific
frequency f0, and to be parallel to the time axis as much as possible. This can be accomplished by using a _~u iðtÞ

which differs from the estimated instantaneous frequency ~f ðtÞ � fcþð1=2pÞ _f iðtÞ by a constant f0 at every instant. The
constant difference f0 will determine the frequency offset of the demodulated component from zero frequency on the
time–frequency plane.
(3)
 Filter the frequency demodulated signal z(t) so as to obtain a demodulated component

ziðtÞ ¼ aiðtÞexp jf2p½fct�~uiðtÞ�þfiðtÞ�g
� 	

: (27)

Any filtering manipulation with real coefficients on analytic signals results in analytic ones, since it only removes the
undesired components and does not change the frequency of interest. So the demodulated and filtered component zi(t)
is still analytic approximately. After such filtering manipulation, only the frequency component of interest is kept and
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separated from the signal, and the other temporarily undesired components are removed. Note that the filter center
should be around the specific frequency f0, and the filter bandwidth should be carefully selected according to the
minimum frequency spacing between the instantaneous frequency trajectories of the desired component and the
others.
(4)
 Reverse demodulate the component zi(t), using a reverse demodulation vector exp½j2p~u iðtÞ�, resulting in

yiðtÞ ¼ exp½j2p~u iðtÞ�ziðtÞ ¼ aiðtÞexpfj½2pfctþfiðtÞ�g, (28)

which is still analytic. This is to reverse frequency demodulate the filtered signal with the conjugate complex
exponential of the same demodulation phase function ~u iðtÞ as used in step (2). It is equivalent to recover the
instantaneous frequency trajectory into its original shape and position on the time–frequency plane, but the recovered
component has exclusively one frequency at any instant, such that a mono-component of interest in the signal is
obtained. After such preprocessing, the separated component yi(t) satisfies the mono-component requirement by the
energy separation algorithm. If necessary, e.g. to satisfy the high carrier frequency requirement by the energy
separation algorithm, a linear term with regards to time ct may be added to the reverse demodulation phase function
~uiðtÞ ¼ ~u iðtÞþct, such that the recovered component will be shifted along the frequency axis to a desired position, where
the constant c controls the frequency offset from the original position at any instant.
(5)
 If it is necessary, e.g. the instantaneous frequency trajectory of the other components, except the one separated, still
have overlap between each other in the frequency domain, then repeat steps (2)–(4) to separate the other components
of interest. Otherwise, repeat steps (3) and (4) to separate them.
(6)
 Take the real part of each separated component yi(t)

xiðtÞ ¼ Re½yiðtÞ� ¼ aiðtÞcos½2pfctþfiðtÞ�: (29)

Now all the mono-components of interest xi(t) constituting the modulated signal of multi-components x(t) are
separated, and their amplitude envelope and instantaneous frequency can be readily estimated using the energy
separation algorithm.
This method is effective for a broad class of signals, as long as the instantaneous frequency trajectories of different
components do not intersect on the time–frequency plane. In most cases, signals satisfy such a simple requirement, and
the components of interest can be separated by filtering after suitable generalized demodulation.

3.2. Example

The performance of energy separation based on iterative generalized demodulation algorithm will be illustrated by
analysis of a simulation AM–FM signal. The synthetic signal consists of three AM–FM components which are quadratic
chirps multiplied by exponentially decaying functions, and of a white Gaussian noise which is added to simulate the
background noise interference

xðtÞ ¼
X3

i ¼ 1

expð�citÞcos 2p f0i�f1i

3t2
1i

ðt�0:511Þ3þ f1iðt�0:511Þ

" #( )
þnðtÞ, (30)

where t¼ 0,0:001,. . .,0:511 s, i.e. the sampling frequency is 1000 Hz, n(t) is a white Gaussian process with zero mean and
variance of 0.0969 (whereas the variance of the summed quadratic chirps is 0.6911, and in this case, the signal-to-noise
ratio is 8.5 dB), and the value for the other parameters are listed in Table 1. It simulates the AM–FM characteristics of rotor
vibration signals during speed varying process. The feasibility of the proposed time–frequency analysis based on improved
energy separation by generalized demodulation in analyzing nonstationary rotor vibration signals will be tested.

Fig. 1 shows the ideal time–frequency energy distribution of the pure signal (sum of the three quadratic chirps), which
is obtained by separately applying the energy separation algorithm to each AM–FM component and followed by a
summation of the time–frequency energy distribution of the three AM–FM components. (Note: In all the figures showing
the time–frequency distribution of a signal, the signal waveform is on the top, its power spectrum on the left, a colorbar
denoting the time–frequency distribution magnitude on the right, and the time–frequency distribution in the middle.) It
can be seen that the instantaneous frequency trajectory of each component is curvilinear and changes in a wide frequency
range on the time–frequency plane. Worst of all, the three AM–FM components overlap in the frequency domain, if their
instantaneous frequency trajectories are projected onto the frequency axis. Any horizontal lines between the signal
e 1
FM parameter.

mponent i ci f0i (Hz) f1i (Hz) t1i (s)

2 150 40 0.511

3 200 60 0.511

4 250 80 0.511
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Fig. 1. Ideal time–frequency energy distribution of a pure signal.
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Fig. 2. Short time Fourier transform spectrogram of a noisy signal with SNR=8.5 dB.
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distribution band (40, 250) Hz split the instantaneous frequency trajectory on the time–frequency plane, so any filtering
manipulation on the signal with a frequency associated with the horizontal lines as the cut-off frequency will cause
information loss. In addition, the mono-component condition which is required by the energy operator cannot be satisfied
by filtering or narrow band decomposition applied directly to the synthetic signal, no matter how narrow the bandwidth is.
A narrow band filtering or decomposition divides the time–frequency plane along the frequency axis, and results in a
rectangular division parallel to the time axis and perpendicular to the frequency axis on the time–frequency plane. Any
rectangular division that covers the full instantaneous frequency trajectory of one component also covers part of the
adjacent instantaneous frequency trajectory. So the obtained filtered signal is not a mono-component. For example, the
subband [60,200] Hz covers the full instantaneous frequency trajectory of the middle component, but it also contains part
of both the top and bottom component instantaneous frequency trajectories. If a filter with too narrow a bandwidth is used
to fulfill the mono-component requirement, it cannot cover the full instantaneous frequency trajectory of a component. For
example, the subband [0,60] Hz and [200,250] Hz contain only the bottom and the top component, respectively, but
unfortunately they cover only the end and the beginning of their respective components, so the time-varying feature over
the whole duration cannot be revealed. This issue makes it an intractable problem to separate such signals into mono-
components with traditional filtering or decomposition method.

Fig. 2 shows the short time Fourier transform spectrogram of the simulated noisy signal, with a Hamming window of
length 101 which is well adapted to resolve the signal time–frequency structure. By comparing the signal waveforms
in Figs. 1 and 2, the noise effect can be clearly seen. Even though short time Fourier transform spectrogram has a lower



Z. Feng et al. / Journal of Sound and Vibration 330 (2011) 1225–12431234
time–frequency resolution in comparison to Fig. 1, it reveals the time–frequency features of the signal: the signal has three
components, and their instantaneous frequencies decay exponentially with time evolution.

According to the findings based on the short time Fourier transform spectrogram, an exponential model

_~uðtÞ ¼ aexpðbtÞ, (31)

where a and b are coefficients to be estimated, is used to fit the instantaneous frequency trajectory of each component on
the time–frequency plane. Selection of the fitting models depends on the shape of instantaneous frequency trajectories.
Other curve fitting models like polynomials can also be used, as long as they are integrable so that the demodulation phase
function can be obtained by integrating the fitting function with respect to time. Here, the coefficients a and b are regressed
based on visually selected peaks at three time instants on the time–frequency plane rather than using the known
simulation parameters in Table 1. Table 2 lists the time–frequency location of the peaks at the three instants for each
component and the regressed coefficients of corresponding exponential model. Fig. 3 shows the theoretical instantaneous
frequencies, their respective estimations based on the peaks of the spectrogram in Fig. 2 and the corresponding
exponentially fittings, indicating that the exponential model tracks approximately the theoretical instantaneous frequency.
Now the demodulation phase function for each component can be obtained by integrating the exponential function in
Eq. (31) fitting the instantaneous frequency trajectory with respect to time

~uðtÞ ¼
a

b
expðbtÞ: (32)

Fig. 4 shows the time–frequency distribution of the signal demodulated with the demodulation phase function for
demodulating the bottom component. The demodulation phase function used is expfj2p½52:2352expð�2:9699tÞþ150t�g.
Note that a linear term 150t is added to the exponential. It can be seen that the instantaneous frequency trajectory of the
bottom component is de-curved so that it is almost parallel to the time axis and perpendicular to the frequency axis, and it
is shifted along the frequency axis to the 150 Hz position. Although the instantaneous frequency trajectories of the other
two components are also changed, the spacing between each other remains the same as original in Fig. 1. Most of all, the
bottom one neither overlaps nor intersects with them on the time–frequency plane, so it can be isolated from the other
components by a horizontal line, e.g. the bottom black dashed line. Now it can be separated from the signal with a simple
lowpass or bandpass filter, and as a result, it is definitely a mono-component containing only one frequency content at
any instant.

Yet, the top and middle components cannot be separated temporarily, because they still overlap in the frequency
domain after the foregoing single step of generalized demodulation. For example, the subband between the two dashed
lines covers the full instantaneous frequency trajectory of the middle component, but it also contains more than half the
Table 2
Location of peaks and regressed coefficients of exponential fitting model.

Time instant Exponential coefficients

0.064 0.256 0.448 a b

Frequency Bottom 128.9063 70.3125 42.9688 155.1333 �2.9699

Middle 169.9219 97.6563 64.4531 199.8198 �2.6420

Top 214.8438 126.9531 85.9375 250.1848 �2.4954
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Fig. 3. Instantaneous frequencies and exponential fittings of a noisy signal with SNR=8.5 dB.
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Fig. 4. Time–frequency energy distribution with bottom component de-curved.
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Fig. 5. Time–frequency energy distribution of a noisy signal with SNR=8.5 dB.
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Fig. 6. Time–frequency energy distribution of a noisy signal with SNR=2 dB.

Z. Feng et al. / Journal of Sound and Vibration 330 (2011) 1225–1243 1235



Z. Feng et al. / Journal of Sound and Vibration 330 (2011) 1225–12431236
end part of the top component instantaneous frequency trajectory. Such a filter with the interval between the two dashed
lines as passband cannot separate the middle component into mono-component. Therefore, for such multi-component
signals with complicated time–frequency structures, it is necessary to iteratively apply the generalized demodulation with
different properly designed demodulation phase functions to separate them into mono-components.

After separating each generalized demodulated component, apply reverse demodulation to them and take their real
parts separately, then calculate the instantaneous frequency and energy with the energy separation algorithm. The reverse
demodulation phase function used for the bottom component is expf�j2p½52:2352expð�2:9699tÞ�g. By comparing it with
the forward demodulation phase function expfj2p½52:2352expð�2:9699tÞþ150t�g, it can be seen that they differ in
the linear term with regards to time by a term 150t in the exponential. This is equivalent to shifting the separated
mono-component of interest along the frequency axis by an offset of 150 Hz, so as to increase its carrier frequency and
thereby to fulfill the high carrier frequency requirement by the energy separation algorithm. Remember to reverse
frequency shift the estimated instantaneous frequency after energy separation.

Fig. 5 shows the time–frequency energy distribution constructed according to the instantaneous frequency and energy.
It reveals the overall time–frequency feature of the signal with respect to the time variation of the frequency content and
its energy. By comparing Fig. 5 with Fig. 1, it can be seen that it accords well with the ideal one, and reflects the theoretical
instantaneous frequency trajectory. Though the estimated instantaneous frequency trajectories differ somewhat from the
theoretical ones, for example, in the interval 0.4–0.5 s for the middle and bottom ones, this can be overcome by improving
the fitting model or using more points of data (in this example only three points are used) for curve fitting.

In order to further illustrate the robustness of the proposed method to noise, the noise level is increased with a variance
of 0.4359 (in this case, the signal-to-noise ratio is reduced to 2.0 dB). Fig. 6 shows the time–frequency energy distribution
of the noisy signal under this scenario. The signal components and their time evolution are extracted successfully too. This
again validates the performance of the method in presence of noise.

By comparing the new time–frequency energy distribution as shown in Figs. 5 or 6 with the conventional short time
Fourier transform as shown in Fig. 2, some attractive features of the time–frequency energy distribution can be noted. First
of all, it has a fine time–frequency resolution. This advantage is mainly attributed to the good adaptability of both the
energy operator and the energy separation algorithm to instantaneous changes in signals. The energy operator based
energy separation algorithm uses only a few adjacent signal samples to calculate the instantaneous energy of signals at any
instant, and thereby separates the instantaneous frequency and amplitude envelope, so it emphasizes the local time–
frequency structure of signals.

In addition, the time–frequency energy distribution is free of both inner and outer cross term interferences, because the
instantaneous frequency is calculated from mono-components, and it does not involve integral of bilinear/quadratic terms.

4. Analysis of a nonstationary hydroturbine vibration signal

Hydroturbines in hydroelectric power stations often switch between different running states, especially during
transient processes, such as start-up, shut-down, and load rejection processes. The nonstationary response during these
processes contains special information about the condition of hydroturbine generator sets which cannot be obtained
during stable processes. Therefore, it is important to analyze the nonstationary signals for health monitoring and fault
diagnosis purposes. The radial vibration displacement of hydroturbine rotors is a key indicator. In this section, the
proposed time–frequency analysis method based on energy separation and generalized demodulation is applied to
analyzing the nonstationary rotor vibration signal of a hydroturbine during a shut-down process.
Fig. 7. Hydroturbine sketch. Hydroturbine schematic: 1—upper guide bearing, 2—generator rotor, 3—thrust bearing, 4—main shaft, 5—water turbine

guide bearing, 6—spiral case, 7—guide vane, 8—turbine runner, 9—draft tube. Measurement point configuration: V1—at upper guide bearing, V2—at

thrust bearing, V3—at water turbine guide bearing.
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4.1. Hydroturbine parameters and measurement configuration

Fig. 7 shows the sketch of a vertical axial-flow hydroturbine in a hydroelectric power station and the on-site vibration
measurement point configuration.

The main parameters of the hydroturbine are as follows.
Model: ZD(F23)-LH-700
Rated power: 75 MW
Rated speed: 88 rev/min (1.467 Hz).
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Fig. 8. Rotor vibration displacement signal: (a) waveform and (b) Fourier spectrum.
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bearing, and are sampled at a frequency of 16 Hz.

The rotor vibration signals are measured at the positions of upper guide bearing, thrust bearing, and water turbine
4.2. Time–frequency analysis

A shut-down transient process of the hydroturbine lasts for about 64 s without power output. Fig. 8 shows the radial
rotor vibration displacement signal measured at the position of upper guide bearing, and Fig. 9(a)–(f) shows the
corresponding running parameters, such as the speed, power, guide vane opening, switch, excitation voltage and current,
respectively.

During the transient processes of hydroturbines, the operation parameters vary in a wide range continuously, thus
resulting in the inevitable nonstationarity of rotor vibration.

In most cases, the rotating frequency and its multiples are dominant in rotor vibration signals. The rotating frequency,
its multiples or fractional multiples, together with their respective amplitude, are key indicators for monitoring and
diagnosis of rotating machines. During the speed varying process, such as start-up and shut-down processes, these
dominant frequency components follow the time variation of rotating frequency, and they never intersect each other on
the time–frequency plane except at the instant when the speed reaches zero. So they satisfy the condition to be separated
using the iterative generalized demodulation method.

Fig. 10 shows the short time Fourier transform spectrogram of the signal with Hamming window of length 257 well
adapted to resolve the signal time–frequency structure. It can be noted that the signal consists mainly of the rotating
frequency and its multiples up to four times, and a transient component of almost constant frequency around 4.5 Hz. The
rotating frequency and its multiples have overlap in the frequency domain. Based on this preliminary knowledge about the
signal components, an idea to separate these components is outlined as follows: construct a demodulation vector for each
of the four multiples of rotating frequency and the transient component of constant frequency, respectively, then separate
them one by one by applying the generalized demodulation iteratively.

To separate these components, a suitable demodulation phase function is carefully designed for each component. For
the rotating frequency and its multiples, the demodulation phase function can be approximated according to the recorded
rotating frequency which is usually monitored in real applications, or according to the estimated rotating frequency based
on usual time–frequency distribution like short time Fourier transform if the rotating speed is unavailable. Here, to
illustrate the flexibility of the proposed method, the demodulation phase functions are constructed based on the estimated
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Fig. 10. Short time Fourier transform spectrogram.

Table 3
Regressed coefficients of polynomial fitting model.

Harmonic order c0 c1 c2 c3

1 1.3428 �0.0461 0.8265�10�3
�5.7648�10�6

2 2.6856 �0.0922 1.6530�10�3
�11.5295�10�6

3 4.0284 �0.1383 2.4794�10�3
�17.2943�10�6

4 5.3712 �0.1844 3.3059�10�3
�23.0590�10�6
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rotating frequency according to the short time Fourier transform spectrogram Fig. 10, rather than using the recorded
rotating speed data during the shut-down process. A third-order polynomial model _~uðtÞ ¼ c3t3þc2t2þc1tþc0 is used to
approximate the instantaneous frequency trajectory of the rotating frequency component on the time–frequency plane.
The polynomial coefficients are regressed exploiting the time–frequency locations of all the peaks along the bottom
trajectory (i.e. the rotating frequency trajectory) in Fig. 10 to ensure a high precision for the polynomial curve fitting, and
their regressions are listed in Table 3. Fig. 11 shows the recorded, estimated and fitted rotating frequency. It can be seen
that the polynomial fitting tracks the time evolution of the real rotating frequency very well. For the higher (up to forth)
order harmonics of rotating frequency components, the polynomial coefficients are regressed using the corresponding
order harmonic of time–frequency location data. The frequency location at very time instant is obtained by
multiplying the estimated instantaneous rotating frequency with the corresponding order, rather than is estimated
from Fig. 10 since the higher order harmonics are not very significant over the whole shut-down process. Then
the polynomial fitting function is integrated with respect to time to get a corresponding demodulation phase
function ~uðtÞ ¼ ð1=4Þc3t4þð1=3Þc2t3þð1=2Þc1t2þc0t, and a demodulation vector is constructed from the conjugate
complex exponential of the demodulation phase function as expf�j2p½ð1=4Þc3t4þð1=3Þc2t3þð1=2Þc1t2þc0t�g. For the
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Fig. 11. Polynomial fitting of rotating frequency.
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Fig. 12. Rotating frequency component: (a) waveform, (b) energy, (c) amplitude envelope and (d) instantaneous frequency.
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transient component of constant frequency, a linear phase function with regards to time is used, i.e. expð�j2pctÞ

where c=4.5.
The generalized demodulation algorithm is repeated until all the components of interest are separated into mono-

components. Figs. 12–16 show the separated component waveform, as well as their estimated instantaneous energy,
amplitude envelope and instantaneous frequency, respectively.

Fig. 17 shows the time–frequency energy distribution constructed with the above five separated components. It is
obvious that all the prominent components are clearly identified. The time variation of each component is tracked in a fine
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Fig. 13. Twice rotating frequency component: (a) waveform, (b) energy, (c) amplitude envelope and (d) instantaneous frequency.
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Fig. 14. Three times rotating frequency component: (a) waveform, (b) energy, (c) amplitude envelope and (d) instantaneous frequency.



0 20 40 60
−5

0

5

Time [s]

A
m

pl
itu

de
 [µ

m
]

0 20 40 60
0

5

10

15

Time [s]

E
ne

rg
y 

[µ
m

2 ]
0 20 40 60

0

1

2

3

4

5

Time [s]

A
m

pi
ltu

de
 e

nv
el

op
e 

[µ
m

]

0 20 40 60
0

2

4

6

Time [s]

In
st

an
ta

ne
ou

s
fre

qu
en

cy
 [H

z]

Fig. 15. Four times rotating frequency component: (a) waveform, (b) energy, (c) amplitude envelope and (d) instantaneous frequency.
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Fig. 16. Constant frequency transient component: (a) wave form, (b) energy, (c) ampiltude envelope and (d) instantaneous frequency.
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resolution. The rotating frequency and its multiples up to four times exist throughout the shut-down process. The transient
component around 4.5 Hz appears during the first half and near the end of the process. The vibration source energy is
mainly associated with the rotating frequency during the beginning of the shut-down process, i.e. [0,12] s, and with the
transient component of almost constant frequency around 4.5 Hz during the interval [7,17] s.

The time–frequency feature shown in Fig. 17 is different from that in Fig. 10. It is mainly due to reason that the energy
defined in the two methods are completely different. In the energy operator, the energy refers to the total mechanical
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energy needed to generate the vibration signal, and is proportional to the product of the squared amplitude and the
squared frequency, whereas in many traditional time–frequency analysis methods, the energy is simply defined as directly
proportional to the square of signal amplitude. The time evolution of the rotating frequency multiples over the whole
process is fully revealed in Fig. 17, because although the amplitudes of the 2–4 times rotating frequency are smaller
compared to the rotating frequency, their frequencies are bigger so that their energy is not negligible. But in Fig. 10, part of
the time evolution information is lost, because the amplitudes of the 2–4 times rotating frequency are small so that their
energy in terms of squared amplitude is not comparable to that of the rotating frequency.

During shut-down processes, the guide vane opening controls the water flow amount and plays an important role on
the rotation of hydroturbines. With the guide vane closing gradually, less and less water flows though and acts on the
hydroturbine, i.e. less and less energy input into the hydroturbine, so the total source energy generating the vibration is
also becoming smaller and smaller. In addition, the damping caused by the friction and water, etc, also absorbs the energy
and thereby attenuates the vibration. Therefore, the energy decreases along time from a global point of view, so does the
rotating speed, despite the almost constant amplitude (e.g. in the interval of 20–50 s) of the rotating frequency and its
multiple components. This fact is fully revealed in the subplots (b) of Figs. 12–16.

In summary, the time–frequency features of the rotor vibration signal is revealed in the time–frequency energy
distribution, by virtue of the advantage of generalized demodulation in separating mono-components from signals, and the
advantage of the energy separation algorithm in finely tracking the instantaneous changes in signals. It shows the potential
of the proposed time–frequency method in analyzing nonstationary rotor vibration signals.

5. Conclusions

The energy separation algorithm is improved with the iterative generalized demodulation method as a preprocessing
tool, so it can be generalized to a broad range of signals as long as the instantaneous frequency trajectories of desired signal
components do not intersect the others on the time–frequency plane.

The time–frequency energy distribution based on the proposed method has fine time–frequency resolution, due to the
good adaptability of the energy operator to instantaneous changes in signals. It is also free of cross term interferences,
because the instantaneous frequency is calculated from mono-components, and the energy separation algorithm does not
involve integral of quadratic terms.

The good performance of the proposed method, including the iterative generalized demodulation based energy
separation algorithm and the time–frequency energy distribution, in analyzing time-varying modulated multi-component
signals, are illustrated by both simulation signals and an on-site measured hydroturbine rotor vibration signal during a
shut-down transient process. This method has potential to analyze many time-varying modulated multi-component
signals, especially nonstationary rotor vibration signals.
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